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Quantization of the electromagnetic interactions of scalar charged particles is 
considered within the stochastic Langevin and Schwinger-Dyson equations with 
nonlocal white noise. Fulfillment of the gauge-invariant condition in such a 
scheme is studied in detail. Matrix elements of the vacuum polarization and 
self-energy diagrams of the scalar electrodynamics are calculated explicitly, 
which reduce to usual nonlocal scalar electrodynamic results. 

1. INTRODUCTION 

Within the framework of stochastic quantization (Parisi and Wu, 1981), 
methods of  nonequilibrium statistical mechanics have been used to study 
different theoretical field models (for example, see Migdal, 1986). This 
alternative method of quantization of physical systems to the usual Hamil- 
tonian, path integral, and action formulations has given birth to a number 
of new ideas and to the understanding of many problems of field theory. 
In particular, these developments include Zwanziger's gauge fixing (Zwan- 
ziger, 1981; Floratos et al., 1984), large-N quenching and large-N master 
fields (Alfaro and Sakita, 1983; Greensite and Halpern, 1983), stochastic 
stabilization (Greensite and Halpern, 1984), stochastic regularization (Bern 
et al., 1987a, b; Niemi and Wijewardhana, 1982), and numerical applications 
of  the Langevin equation in lattice gauge theory (Hamber and Heller, 1984; 
Batrouni et al., 1985). Moreover, the stochastic scheme of construction of 
quantum field theory may be technically superior and useful for the quantiz- 
ation of gravity (Halpern, 1987; Chan and Halpern, 1987) and for nonper- 
turbative analysis (Doering, 1985). 
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In a previous paper (Dineykhan and Namsrai, 1988) we studied the 
regularization problem of the Langevin and Schwinger-Dyson equations 
within nonlocal quantum field theory (Efimov, 1977, 1985). 

The basic idea of our prescription consisted in considering, instead of 
the usual differential equations of the stochastic theory, their modified 
versions with nonlocal white noise 

~/(x, t)--> ~nonJoc(X, t) = f (dy)K(x -y )~(y ,  t), (dy) = dgy (1) 

Here K(x )=  K(V712)8(4)(x) is a nonlocal generalized function (Efimov, 
1977, 1985), and t and l are parameters of the theory we call the "fifth 
time" and the fundamental length, respectively. The local white noise in 
(1) satisfies the condition 

(~/(x, t)~/(y, t'))n = 28(4) (x-y)8( t - t ' )  

The nonlocal white noise (1) plays a double role in the stochastic 
quantization method; it controls the quantum behavior of a physical system 
and at the same time it carries nonlocality in stochastic equations, i.e., it 
makes the theory finite in each order of the perturbation series of the 
coupling constant. This method was applied to the investigation of scalar 
and gauge fields and also to the calculation of photon and gluon masses, 
which turn out to be zero (Dineykhan and Namsrai, 1988). The present 
paper continues our previous work and is devoted to the construction of 
gauge-invariant finite scalar electrodynamics by means of a stochastic quan- 
tization scheme with the nonlocal white noise (1), and an outline of which 
is as follows. In Section 2 it is shown that in our approach the gauge-invariant 
condition is fulfilled and in calculations of gauge-invariant quantities a 
dependence on a gauge-fixing parameter does not appear. Further, we 
construct the electromagnetic interaction of scalar particles in the Schwin- 
ger-Dyson formalism. Sections 4 and 5 are devoted to the calculation of 
the vacuum polarization and the self-energy diagrams for scalar particles. 

2. THE LANGEVIN EQUATION IN GAUGE THEORIES AND 
GAUGE-FIXING PROCEDURE 

The basic equations of the stochastic quantization (Parisi and Wu, 
1981; Bern et ai., 1987a) are the Langevin and Schwinger-Dyson equations. 
These define the behavior of field functions and their dependence on the 
white noise. In particular, the Langevin equation for a gauge field A~(x, t) 
takes the form 

OA~(x,t) 8S bDabAbq_~ ab b (dy)Kxy(A)~7g(y, t) (2) 
0t 
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where 

s=-~ (dx )F~(x )F~(x )  

is the standard form of the gauge field action and F ~ ( x )  is the stress tensor 
of the Yang-Mills field: 

F.~(X)=O.A~-&A~, + abc b c ,, ,~ ,~ g f  Au~(x)A,.(x) 

The second term on the right-hand side of (2) is called the Zwanziger (1981) 
term, which determines the gauge fixing and has the form 

D~bA b = 1  [SabO, _ gf~bCA~(x)]O~A~(x ) 
a 

where a is the gauge-fixing parameter. In our case, the white noise is 
distributed by means of the nonlocal generalized function ~b K~y(R), the 
Fourier transform of which is an entire analytic function of the variable 
x =p212 with a finite order of growth o0> p _  1/2 and decreases rapidly 
enough when z-->co [for details see Efimov (1977)]. For equation (2) the 
nonlocal distribution ~b K~y(A) is a function of the covariant Laplacian 

A~,by = f (dz)Dy(z)~d(z--x)D~b(Z)6(d)(Z--y) (3) 
J 

where 

( dz) = daz 
acb c D~b(X)=6~bO~, + g f  A~,(x) 

and d is the dimension of space-time. This definition generalizes the usual 
Laplacian []~y, 

[],~y = f (clz)~ x -z)O~,8: a(z_y)  

From (3) it is easily seen that 
ab ba Kxy(A) = Kr~(a) 

In the weak coupling limit the nonlocal distribution .b K~r(A) may be 
decomposed by a power of the coupling constant g: 

K~x(A)~b =K~(E3)+�89 H(E3)F,K(,)([3)]~ 
+ �89 K('(E3)F2H (D) + H(E3)F2K ('(E3)]~ 

+ ~g~E K(~)(rT)r , H (rT)r ,H (n) 

+ H(D)r ,K(~) (n)r ,H(n)+ H(~)r,H(r7)rlKC~)(~)]~x~ (4) 



314 Dineykhan and Namsrai 

Here the Fourier transforms of generalized functions K(i)(E]) are given by 
[for details, see Dineykhan and Namsrai (1988)] 

KO)(p212 ) 1 f - ~ - i ~  r (0<fl  <1) 
=2"i 3-/~+ioo sin ,i'/-~- 

1 f~-'~176 . W( O K(E)(p212) = ~ j~+,~ d r  r162 1)(p2/2) r 

and for the operator Hxy([])= ([~f12)-lS(d)(X--y) we have 

Hxy([~) = - I  (dp) e-~P(~-Y)H(p212) 

H(p212) =p-21-2 

The vertex functions FI and F 2 in (4) are given by 

(F1)~y b = 12f~b~[A~(x)O~. +O.A~(x)]6(a)(x - y )  

(F2):y b = 12f~"ffb=A~(x)A'f(x)8(a)(x- y) 

It should be noted that equation (2) is invariant under the following 
local gauge transformations: 

A~(x, t) --~ a~b(x)Ab (x, t) 

~l~(X, t)--~a~b(x)~(X, t) (5) 

where ~Ob(x) c SO(N 2-  1) is an adjoint representation of SU(N).  
As shown by Bern et al. (1987a), from the Langevin equation (2) 

without the Zwanziger term one can easily obtain the Schwinger-Dyson 
equation. After some standard calculations (Dineykhan and Namsrai, 1988) 
from equation (2) we have 

dF[A] 
- -  = -LF[A] 

dt 

where 

L = -  (dx) (dz)(dy) K~y(A) 8A~(y) 

+ Kzy(AIKz~(A) 6A~(x) 8A.(x) (6) 
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and F [ A ]  is a gauge-invariant functional satisfying the condition 

G a ( X ) F [ A ]  = 0 

for the generator of the gauge transformation: 

8 
G a ( x )  = - -D~b(x )  6 A ~ ( x )  (7) 

for which the commutation relation is defined as 

[Ga(x) ,  Gb(y)]  = gfabcs(d)(x--y)GC(x) 
Now we show that the following gauge condition for L is fulfilled: 

[Oa(x) ,  L] = 0 (8a) 

In our case, according to Efimov (1977), the generalized function .b K~y(A) 
may be represented in the form 

Kxy(A) ~ , ,xy 
.=0 (2n)[ 

The space-time properties of ~b Kxy(A) are defined by a concrete form 
of the coefficients (7. [generally, they are complex quantities; for details, 
see Efimov (1977)]. The product  of generalized functions Kxy(U]) may be 
understood as a contraction operation only. For example, 

K2xy([-l) = f (dz)Kx~(l-q)Kzy(E3) 
.I 

o r  

so that 

[~2y-~. f (dz)[~xz[- .]zy 

- , x y =  (dzO  " " �9 , . . . - - 1 1 - ~ , - z , z 2  . . . .  y 

Using the explicit form of (3) and carrying out integrations over (dz j ) ,  we 
have 

(An'j ab = AaxC,AC, c . . . .  ACx,,-,bs(d)(x - - y )  = (a~)"bs (d ) (x  _ y )  m / Xy 

where 
A ab ac cb = D, .  ( x ) D ~  ( x )  

Thus, the distribution of  the white noise is written as 

. =o ~ (A~")"b6(d)(x - y) (9) 
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Let us consider the particular case when n = 0, i.e., 

~b _ 8~bS~a)(x _ y) K x y  - 

Then from (6) we have 

Lo = -  (dx) 8A•(x)" BAt.(x" 8Au(x 

Taking into account the equality 

8S a b  b 
8A~(x) = - D .  (x)F.,.(x) 

and (6), and after some simplifications, we get for [Ga(x),  Lo] 

f { 8D~'n(y) 6 
[Ga(x),  Lo] = (dy) D~b(x) 8A~(x) Fp~(y) BA~(y) 

~b .,. aFp%(,y) a 
+ D.  (x)Dp (y) 6A~(x) 8A"~(y) 

8D~b(y) 8 
-D;"(y)Fp%(y) 8A~(y) aA~(x) 

8D~b(x) 8 b~-~} 
- 2  3A~(y) 8A~(y) 8A 

Further, we use the functional differential form 

n m  b Dp (y)/ 6A~,(x) = gf"b"Sp~,6(a)(x- y) 

and carry out simple calculations for each term in (8b). The result is 

(@) D]?(x) 8AX(x) Fo%(x) 8A;(x/ 

D~b(x) (dy)D,, (y)[SF,,~(y)/SA,,(x)][,~/SA~(y)] 

6 2 nero raaj c j 
= g f f au(x)F~,,,(x) 6A~(x) 

Dineykhan and Namsrai 

(8b) 
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and 

I ~O~b(x ) ~ ~ 8 2 
(dy) 8A~(y~ ~AT,(y~ 8A~(y) =gf,,~m 6a"~(x)6AT(x) 

Taking the sum of  all these terms, it is easily seen that 

6 z 
[Ga(x) ,  Lo] =gf'~"" =-0 8A~(x),SA'~(x) 

Now let us consider the case when g = 0. From (4) and (9) it follows that 

ab __ co Cn 
K ~y (~) - 2 ~ [] ~(a)(x - y) 6 ab 

In this approximation the expression (6) acquires the form 

= -  (dz)(dy)K:Y(I~)Kzy(F-q) 6A~(y) 6A~.(x) 8A~(x) 

After some analogous calculations carried out above for the commutator 
[G"(x) ,  Lo], we get 

ff [G~(x) ,  L,] = (dy)(dz)K'~"([])K'i~([~)f~"c 6A~(y)6A~(x) 

If  we take into account the following identity for K([~) (Efimov, 1977), 

f mn nb (dz)K= (rq)K~ ([])=E a/~a(")(x-Y)~ "~ 
] 

then we see immediately that 

[G~(x),  Za] = 2  ajI-qJf "be 
J 

where aj = cj/(2j)!. 

8 2 

= 0  
6A~(x)6A~.(x) 

Let us consider the general case, when the nonlocal white noise is 
defined by the distribution (9). From the decomposition (4) it is seen that 
we have already shown the fulfillment of the gauge-invariant condition (8) 
for some of  its components. By an analogous procedure as followed above 
for two particular cases, one can verify that this condition is also satisfied. 
However, the intermediate expressions are very long and cumbersome, and 
therefore we do not give their explicit form as in the previous cases. 

As mentioned by Migdal (1986), in the stochastic quantization scheme 
terms growing over t are mutually canceled in each order of the perturbation 
series for any gauge-invariant quantities and therefore in the Langevin 
equation of the gauge theory one does not need to introduce gauge-fixing 
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terms. It is also possible (Zwanziger, 1981) to transform the Langevin 
equation in order to make these terms vanish, i.e., if the condition (8) is 
fulfilled, then at the end of the calculations of gauge-invariant quantities 
the dependence on the parameter a falls out. In this way, any fields of the 
type of ghosts are not needed. 

In the stochastic quantization scheme with nonlocal white noise the 
gauge-invariant condition (8) is also fulfilled, and therefore calculation of 
any gauge-invariant quantities for this nonlocal theory does not require the 
introduction of intermediate ghost fields. 

In the next sections we show that gauge-invariant quantities do not 
depend on the gauge-fixing parameter. To do this, we consider electromag- 
netic interaction of charged scalar particles within the stochastic quantiz- 
ation with nonlocal white noise. 

3. THE S C H W I N G E R - D Y S O N  F O R M A L I S M  AND 
ELECTROMAGNETIC INTERACTION OF 
SCALAR PARTICLES 

The Langevin equations for electromagnetic field A. (x, t) and charged 
scalar particle fields ~(x, t) and ~v*(x, t) are written as follows: 

dA~, ( x, t) 6S 
(x, t)+O~,A(y, t)+ f (dy)Kxy(D)~?~(y, t) (10a) 

dt 8A~ 

d~(x, t) 6S 
(x, t)+ie~(x, t)A(x, t )+ I (dy)K~y(A)Tl~(y, t) (lOb) 

dt ~ *  

d~p* (x, t) t~S ( 
dt ~ (x, t)-ie~*(x, t)A(x, t)+ ~ (dy)K~y(A*)~l*(y, t) (10c) 

where S is the usual action of electromagnetic interaction of the scalar 
charged particle: 

S = f (dx){�88 - ieA.)q~[2+ m2l~[ 2} 

and F~(x) is the stress tensor of the electromagnetic field 

F,,(x) = O.A~(x) = OvA. (x) 

The second term on the right-hand side of (10a) and (10c) depends on the 
Zwanziger gauge-fixing procedure (Zwanziger, 1981) and is defined as 

A(x, t ) = l o . A . ( x )  
Ol 
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Local white noises ~ ( x ,  t) and r/(x, t), ~7*(x, t) of the electromagnetic and 
charged scalar fields in equations (10a)-(10c) satisfy the usual relations 

(r/N(x , t)'q~(y, t'))~ = 2gN~( t - t ' ) g (d ) (x -y )  

(~*(x, t)r/(y, t ')),----26(t-t ')~(d)(x--y) 

(~7(X, t)~?(y, t')), = (~7*(X, t)~7*(y, t')), =0 

The corresponding distributions Kxy([2) amd Kxy(h), Kxy(A*) are general- 
ized functions, the Fourier transforms of which are entire analytic functions 
of the variable z = p212. These functions are usually called form factors of 
the theory. In equations (10a)-(10c) we have used the following notation, 
as in (3): 

A y = I (dz)D~'(z)6~d)(x - z)DN(z)6~a)(z - y )  

A* = f  x y  (dz)D*~(z)~d( x - z)D*(z)6~d)( z --Y) 

where 

D N (x) = O N - ieA N (x) 

D*(x )  = 0 N + ieA.  (x) 

The Langevin equations (10a)-(10c) are invariant under the gauge transfor- 
mations 

A N ~ A N +oNf(x  , t) 

nN ~ ~7,, + K-I ( [] )oNf  
"q ~ e-ief rl 

for any functions f (x ,  t) and K-1([5) is the inverse operator of K([~). 
According to (10a)-(10c) and after some simple functional transforma- 

tions [for details, see Dineykhan and Namsrai (1988)] the Schwinger-Dyson 
equation for electromagnetic and charged scalar fields may be easily 
obtained. Thus, for the vector field we have 

+ f f (dy) (dz)Kxy(rT)Kyz(E3)6~(z)]  t ~ F [ A ] ~ :  6 A , ( x ) /  0 (11a) 



320 

and for a scalar field 

and 

Dineykhan and Namsrai 

( f  ( d x ) [ - ~ ,  +ie~A 

+ff (dy)(dz)gxy(A)gyz(A)~z)] Sf[~O]~ ( l lb )  

I f  ( dx ) [ - 8-ff-S - ieg~ * A 8q~ 

+ (dy)(dz)K,,y(A*)Ky~(A*) 8-7~z) 8~o*(x)/ 

Here F[A] and F[~o] are gauge-invariant functionals. By using equations 
(1 la)-(1 lc), we will calculate correlation functions for electromagnetic and 
scalar fields. From the Schwinger, Dyson equations ( l la) - (1  lc) it is easily 
seen that correlation functions for the A,,, 9, and 9"  fields are expressed 
through contraction between generalized functions which may be represen- 
ted in the form 

K A 2 f [ xy([3)] = (dz)Kxz(E3)Kzy([2) 

[K~y (A)]2--- f (dz)Kx=(A)Kzy (A) 

Efimov (1977) shows that the contraction operation of entire analytic func- 
tions also give entire analytic ones. Further, we use momentum space, in 
which the Fourier transform of the generalized functions A Kxy([~) is written 
as (Efimov, 1977) 

Cn , 212,n 
KA(P2F)=oL_-o(2nyl tP ) 

where l has the dimension of length; we call it the fundamental length, 
which characterizes the scale of nonlocal interactions. In concrete calcula- 
tions the Mellin representation 

1 
- 0---</3--<1 (12) KA(p2IZ) =-~t a-~3+ioo sin "n'g 

is usually used for KA(p212). As in the case (4), for the form factor of a 
scalar particle we carry out the following decomposition: 

K~y(a) = K ~y([]) + �89 Km([])F[ H (E3) + H (l])I~[ K(1)(l~) ]xy + �9 �9 " 
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over powers of the coupling constant e, The corresponding vertices are 
given by 

(Fi)xy - -ilZ[ A~ (x)3~ (d) e _ +o,a, .(x)]3 ( x - y )  

(F~).~ = -F[A,,(x)A~(x)],Sla)(x - y )  

Next, we restrict ourselves to order e 3 and pass to the momentum representa- 
tion. In this approximation from the decomposition of K~y(A) and (4) one 
can easily see that K~y(A) is expressed through the functions Kx~y(V1), 
K~(l)(n~ I6~(2)r and Kx~y(3)([-]). The corresponding Fourier transforms 
are denoted by V(p212), Vt~)(g:12), V~2~(pZlZ), and V(~)(pZl 2) (see Figure 
2), for which the Mellin representations are valid: 

1 f - a - ' ~ d ~  v(~) [(m2+p2)12]~ (13a) V(p212) =2-i j_~+,~ sin 7r~ 

1 - f - ~ - ' ~  de ~v(~) [(pZ+me)12]e (13b) 

1 f-t~-,oo d V(~)~(~_ 1) [(m2+p2)12]e (13c) 
V(2)(p212) =-~l J-~§ si--n r 

1 f-t~-~oo d V(~)~(~_ 1)(~-2)  [(m~+pZ)12]e (13d) 
�9 V(3)(p212) = 2-i .s -~+~ sin zr~ 

In this paper, we do not consider the explicit form of the entire analytic 
functions V~ ( i=  1, 2, 3), and therefore the concrete form of the 
dependence of v(s r on the parameter s r is not important. We only use the 
following properties: 

v(O) = t, v'(O) = tim &v(~)/O~, lira v(~) = 0 
(14) 

~ 0 ,  ~-~ -1  

For the passage from x space to p space in equations ( l l a ) - ( l l e )  we 
need calculations of the expressions 8S/8A,,, 8S/8q~, and 6S/3~*. Taking 
into account the explicit form of S, the electromagnetic interaction action 
of  charged particles, and after some simplifications, we have 

8S 
3A,,(x) G,F~,,,(x) - ie~oG,~o* + ieq~*O,,~o + 2e2Ad,~l 2 (15a) 

6S =(m2_Vl)~ ,_ ieG~(A~,)_ ieA~O, ,q~.  z z + e  A,,(r (15b) ~,(x) 

6S 
= (m z - Vq)~p + ieG,(A~,~o ) + ieA~G,~o + e2A2~p (15c) 
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With the expression (15a) the equation (1 l a ) f o r  the electromagnetic field 
takes the form, in the momentum representation, 

2 1 

+ e f (dpl)(2pl +p),,~o*(pl)~o(p +pl) 

- 2e2 f f ( dp~)( dp2)a.(pl)~o(p-pl +P2)~P*(P2) 

+ KA(p212)~A~]  8 F [ A ] ~ =  8A~(p)/ 0 (16) 

where the notation (dp) = ddp(2~r) -d has been used. If  the explicit form of 
the gauge-invariant functional F[A] is known, then from (16) we can define 
first, second, third terms, etc., for any order of  the correlation function of 
the electromagnetic field. In particular, if F[A]  = A,,,(qO, then taking into 
account the identity 

r = (8.0 _p~pp/p2 + ap~po/p2)[8,, _pop~[p2+ (1/ce)p~pjp2] (17) 

we have 

(a~,( q~) ) = -q~2( 8~,~. - q~, q,~ q~2 + aq ~2 q,~, q~ ) 

x [e  f (dpl)(2p,+q,).(~(pa+ql)~o*(pl))+2e2 f f (dp,)(dpz) 

x (A~(p,)~o*(pz)r - p ,  +P2))] (18) 

Let F[A] = A~,(ql)A~2(q2). Then, making use of (17) and integrating 
over (dp) from (16) it follows that 

(A~,(q,)A~(q2)) 

= [28~,~ 2 - (q~2ql~,,q2,,2q- qf2q2,~,q2,,2)(1 - a)]  (ff(d)(q, q- q2) 

A22o f [ x K  (qll)Q2-eQ~ (dp~) (2p~+qa).[3~,.-q[2q~q,~,(1-a)] 

x (A~2(q2)~o(p , + q,)~,*(p~))+ (2p~ + q2). [8~2. - q;2q2.q2~(1 - a)] 

x(A,,,(q,)r ~ f f (dp,)(dpa) 
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x [ 8~,~, - q, ~q, ~, q[2( 1 - a )](A~ (p,)A~2(q2) ~ (ql - P~ + P2) ~*(P2)) 

+ [8,,~ - q22q2~q2,,2(1 - a)](A,(pl)A~,(qOq~(q2 --jill-~P2)@*(P2))J (19) 

where QO = (q2+ q22)-,. 

In the same manner, one can calculate three- and four-point correlation 
functions for the photon field. In the next section we show that a gauge- 
invariant quantity such as the photon polarization operator does not depend 
on the parameter a, terms depending on which mutually cancel. Therefore, 
it is convenient to the three- and four-point correlation functions of the 
photon for a concrete choice of the parameter a, namely a = 1. Thus, for 
the three-point photon correlation function we have 

(A~,( q , )A~(  q2)A~3( q3)} 

= 2Q3[KA(q~I2)8 ... .  A~3(q3)8 a (q~ + q3) + cyclic perm {qi}] 

- eQ3 j (dpl)[(2p~+q~)~l(r 

x A~(q3)) + cyclic perm {@] 

-2e2Q3 f f (dPl)(dP2)[(q~*(P2)q~(ql-Pl+P2) 

• A~,(pl)A~(q2)A~3(q3)) + cyclic perm {q,}] (20) 

and for the fourth-point correlation function 

(A~,( q~)A~2( q2)A~3( q3)A~( q4)) 

= 2Q4[KA(q~12)ga(ql + q2)6 .. . .  

• (A~3(q3)A~(q4)) + cyclic perm {qi}] 

- eQ4 j (dp,)[(2p, + ql)~, 

x (~ (p ,  + q,)q*(pl)A~2(q2)A~(q3)A~(q4) ) 

+ cyclic perm {q~}] - 2e2Q4 

xf.f (dpl)(dp2)[(~*(p2)~o(q,-p ,+p2)  

• A~,(p,)A~z(q2)A~(q3)A~.(q4))+ cyclic perm {q,}] (21) 

where 

and 

= ( q l + q 2 + q 3  ) , Q 4 = ( q ~ + q 2 +  2 2-1 Q3 2 2 2 t 
q3 + q4) 

g<d)(p) = (2~.)as(a)(p) 
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Expressions (20) and (21) correspond to the correlation functions of  the 
photon field, defined by the Schwinger-Dyson formalism. Now we consider 
correlation func t io~  for scalar charged particles within this formalism. To 
calculate the two-point correlation function for a charged scalar particle, 
we pass to the momentum representation for equations (1 lb) and (1 lc) and 
choose F[~p]= ~o(ql)q~*(q2 ). After an analogous procedure as followed 
above for the photon field, we get 

(tp (ql) ~p*(q2)) = 2Q2 V(q~12)gd(ql d- q2) + eP + ePn  

1 +-- eN - e2PP - e2pPH - eEpHH Ol 
+ eapPHH + e3pHHH (22) 

where Q2=(2m2+q~+q~)-l; and 

P = Q2 f (dpl)[(pl + ql)~(A~(q~ -Pl)~(Pl)~*(q2)) 

+ (q2+Pl).(A~(P~ - qE)~*(PO~(ql))] (23a) 

PH~12O2fff (dp)(dpl)(dp2)(2pIdl-P2)I.L 

x (A.  (p2)H(p2l :) V(')(p2112)[gd (p -- q~) 

x tff(d)(p I -- q2) + ~(d)(p _ q2)~(d)(p~ _ ql)]~d)(p _p~ --P2) (23b) 

N = Q2 f (dp~)[(p~ + ql).(A.(q~ -Pl)~(Pl)~*(q2)) 

- (q2 +px).(A~(p~ - q2)~(ql)~*(PO)] (23c) 

PP = Qz f f (dpO(dp2)[(A.(p2)A~(ql-Pl-P2)~(PO~*(q2)) 

+ (A~ ( p2)A~ ( q2-  pl - P2)~( q~)~ *(P,)) ] (23d) 

PPH= ,2.Q2 f f f (dpl)(dp2)(dpa)(dp) 

x ~(d)(p _p~ _p:  _pa)H(pEl2) V(1)(p212) 

• (A.(pOA~(p2))[~(d)(P - q~)6(a)(P3 - q2) 

+ ~d(p _ q2)~d(p3 _ ql)] (23e) 
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I 4 
P H H =  14Q2 (dp) [[ (dp j )g~d)(p-p , - -p2)g  ~a) 

j = l  

• (P2-P3-P4)(A~.I(pOA.2(Pa))(2p2+P~)~,(2p4+P3)~.~ 

• [ga (p _ q~)gd (P4-- q2) + g~')(P -- q2)g d (P4-- q,)]~ 

• [ V~2~(pZlZ)H(p~12)H(p]l 2) + H(p21 z) V~Z~(p~12)H(p]12) 

+ H(pZlZ)H(pZl  2) V~2)(p212)] (23f) 

; ' P P H H  = 14Q2 (dp) H (dpj) 
j = l  

x ~d) (p  _p,--P2--P3)6(a)(P3--Pa--PS) 

X (2ps+p4)~,2(A~(p,)A~(p2)A~(p,)> 

+ [~(d)(p _ qa)~(d)(p 5 _ q2)~(d)(p _ q2)~(d)(p~ _ q,)] 

X ~[ V(~>(p~l~)H(p~12)H(p~l~) + H(p~l  ~) V(2)(p~l~)H(p212) 

+ H(p~lZ)H(p~l  ~) V(2)(p21~)] (23g) 

I 6 P H H H =  16Q2 (dp) II (dpj)~(d)(P-Pl--P2)~(d)(pl--P3--P4) 
j ~ l  

x 6~d~(p 3 --P5 -- p6)(2p~ +P2)~, 

• (2p3 + p4),~z(2ps +p6)~3(A~,(pz)A~,z(p4) 

x A~3(p6))[gd)(p -- q ,)gd~(p 5 -  q2) + g~d)(p _ q2)g(d)(p5_ qO] 

X 2~{H(p21Z)H(p~IZ)[H(p~12) V~3)(p~l 2) + H(p212 ) V~3~(p212)] 

+ H(p~12)H(p~12)[H(p2l 2) V~3~(p~l 2) 

+ H(p212)'V~3)(p212)]} (23h) 

In these equations we have restricted ourselves to quantities of the order 
of e 3. The four-point function is calculated in an analogous manner. The 
result reads 

( ~(  ql)~P*( q2)~( q3)~ *( q4) ) 

( 1 ) 
= Q4 2 M  + eR + e R H  +--  eRA - e R R  - e 2 R R H  - e 2 R H H  (24) 

a 

Here the following notations have been introduced: 

Q4 = ( 4ma + q~ + q~ + q32 + q])-i 

M = [ V(q~12)6(a)(q 1 - qz)(~o(q3)q~*(q4) + cyclic perm {q~}] 
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R H =  

R R H  = 
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R H H  = 

( 
R = J (dp,)[(q 1 +p2).(A~.(q 1 -p,)~(pl)~o*(q2)q~(q3)~*(q4)) 

+ ( q 2 + p , ) . ( A . ( p ,  - q2)r ) 

+ cyclic perm {qj}] (25a) 

f (dp)(dpO(dp2)(2p~ +P2)~, 

x g(a)(p - P ,  _p2)H(p21:)  v(l)(pZ12 ) 

X [(Yd)(p 1 -- ql) ~(d)(p -- q2) + ~(d)(p, _ q2)ga(p _ ql)) 

X (A~. (p2) ~ (q3) q~*(q4)) + cyclic perm {q j}] (25b) 

= J- (dpl)[(q I +Pl)u(Au(ql  -Pl)q~(pl)q~*(q2)q~(qa)~o*(q4)) R A  

- (Pl + q2),ZA,~(pl - q2)q~(ql)~o*(pOq~(q3)q~*(q4)) 

§ cyclic perm {q~}] (25c) 

R R  = J ( dpl)( dp2)[ ( A .  ( p2)A.  ( ql - p~ - p2)q~( pl)q~ *( q2)q~( q3)q~ *( q4) ) 

+ (A,. ( pgA , .  ( pl - q2-  pz)~o( qOq~*( pa)~o( q3)q~*( q4) ) 

+ cyclic perm {q j}] (25d) 

12f  (dp)(dpO . . . ( dp3 )6 (a ) (p -p , -p2 -p3 )H(p212)  V(a)(p~t 2) 

X [(~d (p _ ql)g(d)(p3 _ q2) + g(d)(p _ q2)~(d)(p 3 _ ql)) 

X (A.  (pl) A.  (p2) ~0 (q3) q~* (q4)) + cyclic perm {.q j}] (25e) 

I I" (dp) H (dpj)6<a)(P-P,-P2)  
j = l  

x g (a ) (p2-p3-P4) (2pz+pO. ,  
1 (2) 2 2 2 2 2 2 • V (p 1)H(p21 )H (p41 )  

+ H(p212 ) V(2~(p~12)H(p]l 2) 

x H(pZl2)H(p~l  2) V(2)(p~lZ)] 

x [ ( g ' ~ ( p  - ql)ga(p4 - q2) + g d ) ( p  _ qz) 

x Y a ) ( p 4 -  ql))(A. , (p~)a,~(pz)r  

+ cyclic perm {q~}] (25f) 
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Here we have restricted ourselves to order e 2, which is sufficient for further 
concrete calculations. In (25a)-(25f) cyclic permitation over (q j) is under- 
stood as q~ ~ q3 and q2,~, q4- 

4. THE VACUUM POLARIZATION DIAGRAM 

Now we consider concrete processes within the Schwinger-Dyson 
formalism. First, we calculate the process with two external photon lines. 
In our scheme the vacuum polarization is given by the two-point correlation 
function of the photon which is represented in (19). Let us consider each 
term in (19) separately. The first term in (19), i.e., for e=O, defines the 
modified propagator of the photon field: 

(A~,(ql)A~2(q2)) = [6~,~2- q12q,~,q2~2(1 - a)]cl2KA(q~12)g(d)(ql+ q2) (26) 

Similarly, from (22) for e = 0 we determine the modified propagator of the 
scalar particle: 

(~( qOq~.( q2)) = (m2+ q2)-, ~(d)( q I + q2) V( q 212) (27) 

From equation (19) for the two-point correlation photon function we rewrite 
those terms which are proportional to e2: 

(A~,(qx)A~,2(q2)) (') 

= - 2 e 2 0  ~ f f (dP')(dp2){[6~,~'-F12q'~q'~ ( l - a ) ]  

x (A~.(p,)A~(q2)~p(q2-p~ +P2)~*(P2))+ [ 6~.  - ~q2.q2~(1 - a ) ]  

x (A~.(pl)A~,(q,)~(q2 -p ,  + p2)~o*(p2))} 

Substituting quantities (26) and (27) for the modified propagators of the 
photon and the scalar particle and also integrating over (dpO, we get 

(A~l(qx)A,.z(q2) (') 

= 2Q~ + q2)[8~ ,~  - q2ql,q2~. (1 - a ) ]  

X - 2  A 2 2 ( t )  - 2  ql K (q,1)II.~(q,)[8~-q2q2~q2~(1-a)] 

where 

n ~ ( q )  = -2e26.v (dp)V(p212)(mZ+p2)-I (28) 

Further, we employ Feynman-type diagrammic rules for the stochastic 
quantization scheme [for details, see Bern et al. (1987a) and Dineykhan 
and Namsrai (1988)] and represent the corresponding diagram "m Figure 
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~) 

Dineykhan and Namsrai 

b) 

Fig. 1. Vacuum polarization diagram. 

la. Making use of the Mellin representation (13a) for V(p212) and integrating 
over (dp), we obtain from (28) 

(~) H.~(q) = -2e2(16r ~2/2 

~ r -ico 
x d~' F ( - 1  - ~') (m212)e, - 1 - < ~ - < 2  2(~)  

a-~+i~ sm it(  F ( 1 - O  

Taking into account (14) and carrying out contour integration at the 
points ~: = -1 ,  ~: = 0 and keeping terms to lower order of l, we have 

(1) H ~ ( q )  = -e28~(8cr2)-l{o' f2+m[v'(O)+ln m 2 F -  1]} (29) 

where 

t r=  lim v(~: ) / ( l+( )  (30) 
~ - 1  

Now let us consider the other term in (19), which has the form 

(a~,(q,)A,,2(q2)) 

= - e Q  ~ (dp~){(2pl+ql)~[8~,~ -qlql .ql~,(1 - a ) ]  

• (A~2(q2)q~(p I + ql)q~*(p0)+ (2p~ + q2)~. ( 6 ~  - f12q2.q2~2 

+ Cefl2q2uq2~2)(A~,(q~)q~(pl + q2)~*(PO) (31) 

From (31) it is seen that for the description of  the polarization diagram 
one needs to express the correlation function of the photon or scalar particle 
through high orders of e. Finding q~(p~+ qj)q~*(PO from (22) and (23a) 
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and substituting it into (31), we get 

=-e2Q ~ f (dpl){[6~,~-Ft~q,~q,.,(1-a)] 

I x(2pl+q,).[2m2+p~+(pl+ql)2] -' (dp2)[(pl-t-p2-I-ql)~, 

x (A~2(q2)A~(p~ + ql - p2)~(p2)~o*(p0) + (p~ +p2) AA~(q2)A~(m - qO 

x ~o(pl + q0~*(P2))] + cyclic perm (q~ ~ q2)} 

Next, taking into account (26) and (27) and integrating over (dpO, 
we get 

CA~,(q~)A~2(q2)) ~2~ 
-2 a -2KA 2/2 =2gd(q~+q2)Q2[6~,~-q~q~q~,(1 - )]q~ ( q l )  

X 1-[ ~)(ql) [ ~ :  - t~22q2~q2 ~2(1 - ct )] 

where 

f [ V((p+q)212)] (2) = _ e  2 (2p+q)~(2p+q)~ V(p:l 2)§ 
II~(q) (dP)2m2+p2+(p+q) 2 m 2 + p  2 m2+(p+q)2] 

The corresponding diagram is sketched in Figure lb. After some simple 
calculations as done above, we have the following expression for (2) II,,~(q): 

(2)  = e2(16,a.2)-I ( 2 2 , II~.,(q) -i  8~o'-2m 6~,~(v (O)+ln 12m 2) 

-~q ~+(q~q~-q  ~) dx(1-x) 2 v'(0)+lnl2m 2 

+ l n [ l + - ~ 2  x~ (1-�89 - l n ( 1 - x ) } )  (32) 

where o" is given by (30). 
Further, define the quantity ~,(p~ + q~)~,*(p~) by (22) and (23b) and 

substitute it into (31). The result reads 
(A~,,(q,)A~,2(q2)) (3) 

=-e2Qfl2 f (dp,){[6~,~-(l~ql~q,~,(1-a)] 

x (2p~ + qO~[2m2+p2+ (p~ + q02] -1 f (dp)(dp3)(dp2)(2p3 +P2)~ 

x (A~(p2)A~2(q2))H(p212) V(t)(p212)[8 d (p - qt --POgd(p3 --p~) 
+ ga (p _p~)gd (P3 --P~ -- q~)]gd (p --P3 --P2) + cyclic perm (q~ *-~ q2)} 
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Making use of  (26) and carrying out integration over (dp), (dp2), and (dp.O, 
we get 

(A~,,(pl)Av2(q2)) (3) 

=2QOga(q,+q2)[6,.,~, -2 -2 A 2 2 - q l q ~ q l . , ( 1 - a ) ] q ~ K  (q,l  ) 
(3) -2 x 1-I~(ql)[ 6 ~  7 q2q2~,q2.2(1 - a)] 

where 

(3) _ e  2 f 17u~(q) = (dp ) (2p+q) . (2p+q)u[2m2+p2+(p+q)2]  -~ 

X{ V(')(p21Z)/[m2 + (p + q)2] + V(~)((p + q)212)/(ma + p2)} 

The corresponding diagram is shown in Figure lc. After some Simple 
calculations we have finally 

(3) H.~(q)  = e2 (16"B '2 ) - l [ o ' f 2 r~v  2 1 2 - 2 m  6,.~-~(q 6~-q~q, . ) ]  (33) 

Now we go to the next term. The expression for q~(Pl + q~)~o*(p~) is obtained 
from (22) and (23c) after substituting their values into (31). Thus, in this 
approximation we have 

(A~,(q,)A~(q2)) (4) 

if { q,q,~q11),(_o~)] = - e 2 Q ~  (dpl) [6~,,, - - 2  1 

f •  -1 (dp2)[(pl+P2+ql)~. 

X (A~(q2)A.(p~ + q~ -P2)~(P2)~*(P~)) - (P2 +Pl)~ 

x (a1)~(q~)a~(p~ --pl)q~(pl + q~)q~*(P2))] + cyclic perm (ql ~ q2)} 

With the expressions (26) and (27) integration over (dp2) gives 

= 2Q~ + q2)[6.,. - gfiq~.q,~(1 - c~)]q~KA(q~F) 
(4) (S x FI~..(q,)[ .1)2- q2242~q2.( 1 - c~)] 

where 

(4) 1 e2 f I I ~ ( q )  = - - -  (dp)[2m2+p2+(p+q)2] - l (2p+q)~(2p+q)~  
or 

X { V(p212)/ (m 2 q_p2) _ V ( ( p  q- q)e12)/[m2 +. (p  + q)2]} (34) 
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In the second term of this expression, changing the integration variable 
p-~ p ' = p - q  and taking into account its integration property, it is easy to 
verify that II~)(q) is identically equal to zero, i.e., the gauge-invariant 
quantity II.~(q) does not depend on the gauge-fixing parameter a. 

Finally, substituting the expression (18) for A~,j(qj) into (31) and taking 
into account (24) and (27) and after some simplifications, we get from (31) 

(A~(ql)a~z(q2)) (5) 
= 2Q ~ (ql + q2)[ t~,,,,~ - tl2ql ~,,ql~ (1 - a)] 

-2 (5) 2 • -2 1 x ql I I .~(ql ) [  -1~2- q2q2~=q2~(  - -  or)] 

where 

(5) e 1 f I I . ~ ( q )  = (dp)(2p+q)~(Ep+q)~V(p212)V((p+q)212 ) 

• {(m2+p2)[mZ + (p + q)2]}-1 

and the corresponding diagram is shown in Figure ld. A simple calculation 
!-I (5) gives for __~ 

(5) 1-l~,~(q) = (e2/16~2)(2tri-28~,~ + 4m2 8~,,,( v'( O ) + In m212) + �89 8~,, 
IO 1 

+ 2(q26.~ - q~q.) dx(1-2x)  2 

x[v'(O)+lnm212+ln( 1 +~-~x(lq2 - x ) )  - I n ( I - x ) ]  (35) 

The sum of all terms (29) and (32)-(34) gives the full corrections due to 
the diagrams shown in Figures l a - ld  to the vacuum polarization of the 
photon field: 

5 
I I~(q)  = e2(t~t,.q 2 - q~q~,)II(q 2) (36) 

/=1 

where 

Fl(q2)=l@2 fol dx([2(1-2x)2-(1-x)2][v'(O)+ln mEl2-1n(1-x)] 

+ 2 ( 1 - 2 x ) 2 1 n ( l + - ~ 2 x ( 1 - x ) ) - ( 1 - x )  2 

1 q2 

From the explicit form (36) it is easily seen that the gauge-invariant 
condition for the vacuum polarization diagram is fulfilled automatically 
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and the obtained expression agrees with the usual result of nonlocal quantum 
eleetrodynamics (Efimov, 1977) and a dependence on the gauge-fixing 
parameter does not appear here. 

5. SELF-ENERGY D I A G R A M S  FOR A SCALAR PARTICLE 

Now, let us consider the self-energy diagrams of a scalar particle. In 
our scheme, these diagrams are defined by the two-point correlation function 
represented in (22). In the preceding section we have shown that the 
dependence on the gauge-fixing parameter a does not appear in calculations 
of gauge-invariant quantities such as the vacuum polarization of the photon 
field. Therefore, for calculation purpose, we further take o~ = 1 for the 
modified photon propagator. On the other hand, from expressions (22) and 
(24) for two- and three-point correlation functions of  the scalar particle it 
is seen that this dependence on a also falls out. First, from (22) we separate 
terms which are proportional to e 2. Taking into account (23), we get 
from (22) 

(~o (ql)~o*(q2)) O) 

= - e Z Q 2 I I  (dpl)(dpE)[(A,(e2)A~,(ql-p,-p2) 

x ~o(pl)~o*(q2))+(A~(p2)A~,(q2-pl -p2)~o(qO~o*(p2))] (36) 

Further, making use of (26) and (27) and integrating over (dp~), we have 

(~o(q~)~,(q2))o)= ,8e2Q2[ V(q212)/(m2 + qE)]gd(q~_ q2) I dp Ka(p212)/p 2 

The corresponding diagram is shown in Figure 2a. Turning to the Mellin 
representation (12) for KA(p212) and carrying out the integration over (dp) 
and restricting consideration to lower orders of l, we obtain after calculations 
of the contour integral 

e 2 V(q2112) cr 
(~ (q l )~*(q2) )  (1) = 2r 5 gd(ql -- q2)Q2 m2 + q2 12 (37) 

Now, we express ~o(ql)~*(q2) through (23d) and carry out some simple 
calculations for (22). The result reads 

(~o (ql) q~*(q2)) ~2) = -8e212Q 2 V~X)(q 212) H(q~12) 6d (ql - q2) 

X f (dp)KA(p212)ff 2 

The corresponding diagram is sketched in Figure 2b. 
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a) W 

c) d) 

o) 

e) ,,) 

~:'{p~t ~) ~ ~ j V(p=t=)- ~ ; 

vt~)(P 2t2)--- ~ 7, . 

Fig. 2. The self-energy diagrams of the scalar particle. 

After analogous  calculat ions as done  above, we have 

e 2 gd(ql--q2 ) V~')(q~12) tr 
(~p(q~)~*(q2)) ~2)= 2zt22m2+q~+q ~ m2+q ~ 12 (38) 

From the expression (22) we see that one term propor t ional  to e 2 
remains. For  the calculation o f  this term, we take (23e) and simplify (22). 
Then 

(tp (ql)~p*(q2)) (3) 

= - ~e214Q2 W2'(q~12)H(q~l 2) f (dP) ~d (ql - q2)( P + 2q~) z 

x H((p+q~)212)KA(p212)p2-)e214Q2H(q~12 ) f (dp) 

x (p + 2qf)2H(( p + q,)212) V~2)((p + ql)212):2K A(p212)gd (q, _ q2) 
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The corresponding diagram is shown in Figure 2c. In order to present 
an explicit form of this expression, we carry out some standard simple 
calculations, which are reduced to the following formula: 

(tp (q0~p*(q2))  (3) 

e 2 V(2)(q~! 2) 
_ 2 __ gd -q2)Q2 

3 167r 2 (ql m2+q21 

x o'r2+m2[v'(0)+ln m212]-2q~ v'(0)+ln ra212--~ 

1 e 2 
3 16Ir 2 ga(ql - q2)Q2 ~ (2 o'r2- m2+2q~) (39) 

m t q l  

Now let us consider other terms which are proportional to e. From 
expression (22) it is easily seen that there exist three such terms. One of 
them is represented in (23c), which does not give a contribution to the 
self-energy diagram of the scalar particle as in the case of the polarization 
diagram. The other expression is given in (23b). To obtain terms proportional 
to e 2, A,(ql) should be expressed through the quantity represented in (18). 
Then the corresponding diagram is sketched in Figure 2d, which is propor- 
tional to the integral 

I (dp)p,f(p ~) 

Therefore, it does not contribute to the self-energy diagram. Finally, we 
consider the expression presented in (23a): 

= eQ2 f (dpO[(p~ + ql)~(A~(ql --PO~(Pl)~*(q2)) (~(ql)~*(q2)) 

+ (q2 +pl)~(A~(p~ "q2)~(q~)~*(P~))] (40) 

From this expression it is seen that to obtain terms proportional to e 2 we 
need to express A.(q) or ~p(Pl)~*(q2) through values of high order in e. 

First, we define A.(ql-p~) through the expression given by (18) and 
carry out some standard calculations from (40). The result reads 

( ~ ( q x ) ~ * ( q 2 ) )  (4) 

V(q~12) f (p+2ql)2 V((p+ql)212) ~2e2Q2 m2+q ~ 6d(q~--q2) -- (dp) pe m2+(p+qO 2 

The corresponding diagram is presented in Figure 2e. Next, making use 
of the Mellin representation (13) for V(p212) and of the Feynman 
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parametrization, we obtain after integration 

(~p (ql) tp*(q2)) (4) 

_ e 2 V(q212) g d ( q _ q 2  ) 
16~r 2 (m2+ q2)2 

x{o'12+m2[v'(O)+lnm212-1]-2q21[v'(O)+lnm212-�89 (41) 

Now let us express ~(P~)~*(q2) through the quantity given by (23a) 
and (23b). For this, we substitute (23a) with (40) and carry out some 
elementary calculations. Thus, 

(~(ql)~p*(q2)) (5) 

V(q~ 12) f (p+2ql)  2 
= 2e: Q:gd ( q~ - ,~2, ( dp ) 

m -eql J 2 m 2 + ( p + q l ) 2 + q  2 

x KA(p212) + 2e2Q2g d (q, _ q:) 
p: 

f rd " (p+2ql)2 ga(p212) V((p+ql)212) 
X t :P) 2m2+(p+qa)2+q2 p2 m2+(p+q~)2 

e 2 V(q=2l 2) gd (q~ _ q2) 
(rn2+q2) 2 167r 2 

X{trl-2+2me[v'(O)+ln rn2/2+ In 2] 

e 2 gd(ql--q2 ) 
--q21[v'(0)+ln m2/2+ln2--~]} 8~.2 (mZ+q~) 2 

x {mZ[v'(0) + In rn21:+ 2 In 2] + q2[v'(0) 

+In m212+ 1 +I  In 2]}+ O(/2) (42) 

The corresponding diagrams are shown in Figures 2f-2k. Finally, substitu- 
tion (23b) into (40) and analogous simplification give the result 

(q~(ql)~*(q2)) (6) 

- 2e212 I 2m2+q~+q 2 V('!(q212)gd(ql-q2 ) (dp) KA(p212) p2 

(p+2ql)  2 
x 2m2+ (P + ql)2 + q2 n ( ( p  + q,)2/2) , 

2e2l z 
+ 2 2 2 H(q212)gd(q~ - q2) 

2m +q l+q2  

f KA(p2t2) ( p + 2 q a )  2 
x (dp) p2 2m2+(p+qO2+q2  V~ 
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In the limit of the 0 ( I  2) term we have 

(~ (ql)~0*(q2)) (6) 

e2~d(ql -- q2) V~l)(q 212) +In  12m2+2 In 2] 
= 167r 2 (m2+ q~)2 {m2[v'(0) 

+ qE[v'(0) +In m2/2+ 1 +~ In 2]} 

e2 gd ( ql -- qz) ( O" 2 ) 
- -  - - ~ + m - - 2 q l  2 §  (43) 

-~16 2 (m2+q~) 2 

The corresponding diagrams are given in Figures 21-2m. Assuming that the 
elementary length I is small, and momentum q is also not high, i.e., m212<< 1 
and qZ/m2< 1, then the sum of expressions (37)-(39) and (41)-(43) gives 
the following contribution to the two-point correlation function of a scalar 
particle: 

gd(ql - q2) E(ql) 
(~(q0~P*(q2)) = (m2+ q~)2 

where V,(q) gives the contribution to self-energy diagrams of the scalar 
particle 

5e 2 cr 
E(q) = -  167r 2 12 (44) 

where tr is defined by (30). 
By means of (44) it is easy to calculate the correction to the mass value 

of  the scalar particle: 

5or o" 
6m2 = m 2 -  m2 ----- - - ~ ( m 2 )  --  4~r 12 (45) 

Here oL -- e2/47r ~ 1/137. 
Expression (45) agrees with the usual result of nonlocal scalar elec- 

trodynamics (Efimov, 1977). 
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